Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (695 KB)

Title: Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

Author: Scalcinati, Gionata; Otero, Jose´ Manuel; Van Vleet, Jennifer R.H.; Jeffries, Thomas W.; Olsson, Lisbeth; Nielsen, Jens.;

Date: 2012

Source: FEMS Yeast Res (2012) pp. 1–16; 2012.

Publication Series: Scientific Journal (JRNL)

Description: Industrial biotechnology aims to develop robust microbial cell factories, such as , to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research efforts have focused on the metabolic engineering of S. cerevisiae for fast and efficient xylose utilization. This study aims to metabolically engineer S. cerevisiae, such that it can consume xylose as the exclusive substrate while maximizing carbon flux to biomass production. Such a platform may then be enhanced with complementary metabolic engineering strategies that couple biomass production with high value-added chemical. Saccharomyces cerevisiae, expressing xylose reductase, xylitol dehydrogenase and xylulose kinase, from the native xylose-metabolizing yeast Pichia stipitis, was constructed, followed by a directed evolution strategy to improve xylose utilization rates. The resulting S. cerevisiae strain was capable of rapid growth and fast xylose consumption producing only biomass and negligible amount of byproducts. Transcriptional profiling of this strain was employed to further elucidate the observed physiology confirms a strongly up-regulated glyoxylate pathway enabling respiratory metabolism. The resulting strain is a desirable platform for the industrial production of biomass-related products using xylose as a sole carbon source.

Keywords: directed evolution, metabolic engineering, xylose, Saccharomyces cerevisiae, transcriptomics

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Scalcinati, Gionata; Otero, Jose´ Manuel; Van Vleet, Jennifer R.H.; Jeffries, Thomas W.; Olsson, Lisbeth; Nielsen, Jens. 2012. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Research. pp. 1–16. doi: 10.1111/j.1567-1364.2012.00808.x.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.