Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (854 KB)

Title: Fitting the multitemporal curve: a fourier series approach to the missing data problem in remote sensing analysis

Author: Brooks, Evan; Thomas, Valerie; Randolph, Wynne; Coulston, John;

Date: 2012

Source: IEEE Transactions on GeoScience and Remote Sensing 50(9):3340–3353

Publication Series: Scientific Journal (JRNL)

Description: With the advent of free Landsat data stretching back decades, there has been a surge of interest in utilizing remotely sensed data in multitemporal analysis for estimation of biophysical parameters. Such analysis is confounded by cloud cover and other image-specific problems, which result in missing data at various aperiodic times of the year. While there is a wealth of information contained in remotely sensed time series, the analysis of such time series is severely limited due to the missing data. This paper illustrates a technique which can greatly expand the possibilities of such analysis, a Fourier regression algorithm, here on time series of normalized difference vegetation indices (NDVIs) for Landsat pixels with a 30-m resolution. It compares the results with those using the spatial and temporal adaptive reflectance fusion model (STAR-FM), a popular approach that depends on having MODIS pixels with resolutions of 250 m or coarser. STAR-FM uses changes in the MODIS pixels as a template for predicting changes in the Landsat pixels. Fourier regression had an R2 of at least 90% over three quarters of all pixels, and it had the highest R2Predicted values (compared to STAR-FM) on two thirds of the pixels. The typical root-mean-square error for Fourier regression fitting was about 0.05 for NDVI, ranging from 0 to 1. This indicates that Fourier regression may be used to interpolate missing data for multitemporal analysis at the Landsat scale, especially for annual or longer studies.

Keywords: Data fusion, disturbance, harmonic analysis, interpolation, phenology, time series

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Brooks, E.B.; Thomas, V.A.; Wynne, R.H.; Coulston, J.W. 2012. Fitting the multitemporal curve: a fourier series approach to the missing data problem in remote sensing analysis. IEEE Transactions on GeoScience and Remote Sensing 50(9):3340–3353.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.