Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (458 KB)

Title: Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type

Author: Harmon, Mark E.; Fasth, Becky; Woodall, Christopher W.; Sexton, Jay.;

Date: 2013

Source: Forest Ecology and Management. 291: 259-267.

Publication Series: Scientific Journal (JRNL)

Description: The degree to which carbon concentration (CC) of woody detritus varies by tree taxa, stage of decay, tissue type (i.e., bark versus wood), and vertical orientation was examined in samples of 60 tree species from the Northern Hemisphere. The mean CC of 257 study samples was 49.3% with a range of 43.4-56.8%. Angiosperms had a significantly lower CC than gymnosperms, with means of 47.8% and 50.6%, respectively. For whole-stems (i.e., wood and bark), the CC of gymnosperms significantly increased from 49.3% to 53.5% with decomposition, while angiosperms had no significant change. The CC of bark was higher than wood across all stages of decay by an average of ~1.0%. A similar magnitude of difference was found for standing versus downed dead wood in the later stages of decay, with the former having a higher CC than the latter. Differences between angiosperms and gymnosperms are hypothesized to be associated with initial lignin concentrations as well as subsequent decomposition by white- versus brown-rot fungal functional groups. The higher abundance of brown-rots in decomposing gymnosperms may lead to an increase in lignin concentrations, a compound that has higher CC than cellulose. As a result of these findings, uncertainties associated with forest carbon inventories may be reduced by using detrital CC specific to general taxa (angiosperms versus gymnosperms) and stage of decay rather than a single assumed value of 50% as commonly practiced.

Keywords: angiosperm, bark, carbon, coarse woody debris, gymnosperm, wood

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Harmon, Mark E.; Fasth, Becky; Woodall, Christopher W.; Sexton, Jay. 2013. Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. Forest Ecology and Management. 291: 259-267.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.