Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB)

Title: Using Landsat-derived disturbance history (1972-2010) to predict current forest structure

Author: Pflugmacher, Dirk; Cohen, Warren B.; Kennedy, Robert E.;

Date: 2012

Source: Remote Sensing of Environment. 122: 146-165

Publication Series: Scientific Journal (JRNL)

Description: Lidar is currently the most accurate method for remote estimation of forest structure, but it has limited spatial and temporal coverage. Conversely, Landsat data are more widely available, but exhibit a weaker relationship with structure under medium to high leaf area conditions. One potentially valuable means of enhancing the relationship between Landsat reflectance and forest structure is to incorporate Landsat spectral trends prior to a date of interest. Because the condition of a forest stand at any point in time is linked to the stand's disturbance history, an approach that directly leverages the temporal information of Landsat time series should improve estimates of forest structure. The main objective of this study was to test and demonstrate the utility of disturbance and recovery metrics derived from spectral profiles of annual Landsat time series (LTS) to predict current forest structure attributes (as compared to more traditional approaches, including airborne, discrete return lidar and single-date Landsat). We estimated aboveground live biomass (AGBlive), dead woody biomass (AGBdead), basal area (live and dead), and Lorey's mean stand height for a mixed-conifer forest in eastern Oregon, USA, and compared the results with estimates from lidar and single, current-date Landsat imagery. Annual time-series stacks for the entire Landsat record ( 1972-201 0) were obtained to characterize all long-term (insect, growth) and short-term (fire, harvest) vegetation changes that occurred during that period. This required the additional objective of integrating Landsat data from MSS and TM/ETM +sensors, and we describe here our approach. To extract spectral trajectories and change metrics associated with forest disturbances and recovery we applied a temporal segmentation to the calibrated time series.

Keywords: Landsat, time series, forest disturbance, biomass, carbon, lidar, MSS, tasseled cap, LandTrendr, TimeSync

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Pflugmacher, Dirk; Cohen, Warren B.; Kennedy, Robert E. 2012. Using Landsat-derived disturbance history (1972-2010) to predict current forest structure. Remote Sensing of Environment. 122: 146-165.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.