Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (470 KB)

Title: Can elevated CO2 and ozone shift the genetic composition of aspen (Populus tremuloides) stands? New Phytologist

Author: Moran, Emily V.; Kubiske, Mark E.;

Date: 2013

Source: New Phytologist. doi: 10.1111/nph.12153.

Publication Series: Scientific Journal (JRNL)

Description: The world's forests are currently exposed to increasing concentrations of carbon dioxide (CO2) and ozone (O3). Both pollutants can potentially exert a selective effect on plant populations. This, in turn, may lead to changes in ecosystem properties, such as carbon sequestration. Here, we report how elevated CO2 and O3 affect the genetic composition of a woody plant population via altered survival. Using data from the Aspen free-air CO2 enrichment (FACE) experiment (in which aspen clones were grown in factorial combinations of CO2 and O3), we develop a hierarchical Bayesian model of survival. We also examine how survival differences between clones could affect pollutant responses in the next generation. Our model predicts that the relative abundance of the tested clones, given equal initial abundance, would shift under either elevated CO2 or O3 as a result of changing survival rates. Survival was strongly affected by between-clone differences in growth responses. Selection could noticeably decrease O3 sensitivity in the next generation, depending on the heritability of growth responses and the distribution of seed production. The response to selection by CO2, however, is likely to be small. Our results suggest that the changing atmospheric composition could shift the genotypic composition and average pollutant responses of tree populations over moderate timescales.

Keywords: Bayesian, CO2, FACE, growth, mortality, ozone, Populus tremuloides (aspen), selection

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Moran, Emily V.; Kubiske, Mark E. 2013. Can elevated CO2 and ozone shift the genetic composition of aspen (Populus tremuloides) stands? New Phytologist. doi: 10.1111/nph.12153.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.