Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB bytes)

Title: Wildland fire emissions, carbon and climate: Characterizing wildland fuels

Author: Weise, David R.; Wright, Clinton S.;

Date: 2013

Source: Forest Ecology and Management. 317: 26-40

Publication Series: Scientific Journal (JRNL)

Description: Smoke from biomass fires makes up a substantial portion of global greenhouse gas, aerosol, and black carbon (GHG/A/BC) emissions. Understanding how fuel characteristics and conditions affect fire occurrence and extent, combustion dynamics, and fuel consumption is critical for making accurate, reliable estimates of emissions production at local, regional, national, and global scales. The type, amount, characteristics, and condition of wildland fuels affect combustion and emissions during wildland and prescribed fires. Description of fuel elements has focused on those needed for fire spread and fire danger prediction. Knowledge of physical and chemical properties for a limited number of plant species exists. Fuel beds with potential for high impact on smoldering emissions are not described well. An assortment of systems, methods, analytical techniques, and technologies have been used and are being developed to describe, classify, and map wildland fuels for a variety of applications. Older systems do not contain the necessary information to describe realistically the wildland fuel complex. While new tools provide needed detail, cost effectiveness to produce a reliable national fuels inventory has not been demonstrated. Climate change-related effects on vegetation growth and fuel distribution may affect the amount of GHG/A/BC emissions from wildland fires. A fundamental understanding of the relationships between fuel characteristics, fuel conditions, fire occurrence, combustion dynamics, and GHG/A/BC emissions is needed to aid strategy development to mitigate the expected effects of climate change.

Keywords: classification, sampling, remote sensing, physical, chemical, scaling

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Weise, David R.; Wright, Clinton S. 2013. Wildland fire emissions, carbon and climate: Characterizing wildland fuels. Forest Ecology and Management. 317: 26-40.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.