Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB)

Title: Modeling potential hydrochemical responses to climate change and rising CO2 at the Hubbard Brook Experimental Forest using a dynamic biogeochemical model (PnET-BGC)

Author: Pourmokhtarian, Afshin; Driscoll, Charles T.; Campbell, John L.; Hayhoe, Katharine.;

Date: 2012

Source: Water Resources Research. 48. W07514.

Publication Series: Scientific Journal (JRNL)

Description: Dynamic hydrochemical models are useful tools for understanding and predicting the interactive effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and water quality of forested watersheds. We used the biogeochemical model, PnET-BGC, to evaluate the effects of potential future changes in temperature, precipitation, solar radiation, and atmospheric CO2 on pools, concentrations, and fluxes of major elements at the Hubbard Brook Experimental Forest in New Hampshire, United States. Future climate projections used to run PnET-BGC were generated specifically for the Hubbard Brook Experimental Forest with a statistical technique that downscales climate output (e.g., air temperature, precipitation, solar radiation) from atmosphere-ocean general circulation models (AOGCMs) to a finer temporal and spatial resolution. These climate projections indicate that over the twenty-first century, average air temperature will increase at the site by 1.7°C to 6.5°C with simultaneous increases in annual average precipitation ranging from 4 to 32 cm above the long-term mean (1970-2000). PnET-BGC simulations under future climate change show a shift in hydrology characterized by later snowpack development, earlier spring discharge (snowmelt), greater evapotranspiration, and a slight increase in annual water yield (associated with CO2 effects on vegetation). Model results indicate that under elevated temperature, net soil nitrogen mineralization and nitrification markedly increase, resulting in acidification of soil and stream water, thereby altering the quality of water draining from forested watersheds. Invoking a CO2 fertilization effect on vegetation under climate change substantially mitigates watershed nitrogen loss, highlighting the need for a more thorough understanding of CO2 effects on forest vegetation.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Pourmokhtarian, Afshin; Driscoll, Charles T.; Campbell, John L.; Hayhoe, Katharine. 2012. Modeling potential hydrochemical responses to climate change and rising CO2 at the Hubbard Brook Experimental Forest using a dynamic biogeochemical model (PnET-BGC). Water Resources Research. 48. W07514. doi:10.1029/2011WR011228.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.