Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.3 MB)

Title: Re-evaluating causal modeling with mantel tests in landscape genetics

Author: Cushman, Samuel A.; Wasserman, Tzeidle N.; Landguth, Erin L.; Shirk, Andrew J.;

Date: 2013

Source: Diversity. 5: 51-72.

Publication Series: Scientific Journal (JRNL)

Description: The predominant analytical approach to associate landscape patterns with gene flow processes is based on the association of cost distances with genetic distances between individuals. Mantel and partial Mantel tests have been the dominant statistical tools used to correlate cost distances and genetic distances in landscape genetics. However, the inherent high correlation among alternative resistance models results in a high risk of spurious correlations using simple Mantel tests. Several refinements, including causal modeling, have been developed to reduce the risk of affirming spurious correlations and to assist model selection. However, the evaluation of these approaches has been incomplete in several respects. To demonstrate the general reliability of the causal modeling approach with Mantel tests, it must be shown to be able to correctly identify a wide range of landscape resistance models as the correct drivers relative to alternative hypotheses. The objectives of this study were to (1) evaluate the effectiveness of the originally published causal modeling framework to support the correct model and reject alternative hypotheses of isolation by distance and isolation by barriers and to (2) evaluate the effectiveness of causal modeling involving direct competition of all hypotheses to support the correct model and reject all alternative landscape resistance models. We found that partial Mantel tests have very low Type II error rates, but elevated Type I error rates. This leads to frequent identification of support for spurious correlations between alternative resistance hypotheses and genetic distance, independent of the true resistance model. The frequency in which this occurs is directly related to the degree of correlation between true and alternative resistance models. We propose an improvement based on the relative support of the causal modeling diagnostic tests.

Keywords: landscape genetics, mantel test, causal modeling, simulation, CDPOP

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Cushman, Samuel A.; Wasserman, Tzeidle N.; Landguth, Erin L.; Shirk, Andrew J. 2013. Re-evaluating causal modeling with mantel tests in landscape genetics. Diversity. 5: 51-72.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.