Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (343 KB)

Title: Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species

Author: Bartlett, Megan K.; Ollinger, Scott V.; Hollinger, David Y.; Wicklein, Haley F.; Richardson, Andrew D.;

Date: 2011

Source: Botany. 89: 491-497.

Publication Series: Scientific Journal (JRNL)

Description: Strong positive correlations between the maximum rate of canopy photosynthesis, canopy-averaged foliar nitrogen concentration, and canopy albedo have been shown in previous studies. While leaf-level relationships between photosynthetic capacity and foliar nitrogen are well documented, it is not clear whether leaf-level relationships between solar-weighted reflectance and nitrogen underlie the canopy-scale patterns. Using an integrating sphere, we measured the reflectance and transmittance (350-2500 nm) of both individual leaves and multileaf stacks. Samples were collected from 12 broadleaf species at the Harvard Forest in central Massachusetts, USA. Across all species, foliar nitrogen (both mass-based nitrogen concentration and area-based nitrogen content) and leaf mass / area ratio were negatively, rather than positively, correlated with solar-weighted reflectance and transmittance in ultraviolet-visible and near-infrared wavelength bands (350-700 nm and 700-2500 nm, respectively). Leaf-level anatomy and biochemistry, therefore, do not appear to drive the canopy- level association between increasing foliar nitrogen content and increasing canopy albedo. This suggests that interactions between leaf optical properties and structural canopy-scale traits that correlate with nitrogen content (perhaps some combination of crown shape, leaf area index, leaf angular distribution, or other structural characteristics of the canopy), may instead underlie the previously observed relationship between nitrogen and canopy-level shortwave albedo.

Keywords: albedo, leaf nitrogen, reflectance, photosynthesis, optical properties

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Bartlett, Megan K.; Ollinger, Scott V.; Hollinger, David Y.; Wicklein, Haley F.; Richardson, Andrew D. 2011. Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species. Botany. 89: 491-497.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.