Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (280 KB)

Title: A framework for inference about carnivore density from unstructured spatial sampling of scat using detector dogs

Author: Thompson, Craig M.; Royle, J. Andrew; Garner, James D.;

Date: 2012

Source: Journal of Wildlife Management 76: 863-871

Publication Series: Scientific Journal (JRNL)

Description: Wildlife management often hinges upon an accurate assessment of population density. Although undeniably useful, many of the traditional approaches to density estimation such as visual counts, livetrapping, or mark–recapture suffer from a suite of methodological and analytical weaknesses. Rare, secretive, or highly mobile species exacerbate these problems through the reality of small sample sizes and movement on and off study sites. In response to these difficulties, there is growing interest in the use of noninvasive survey techniques, which provide the opportunity to collect larger samples with minimal increases in effort, as well as the application of analytical frameworks that are not reliant on large sample size arguments. One promising survey technique, the use of scat detecting dogs, offers a greatly enhanced probability of detection while at the same time generating new difficulties with respect to non-standard survey routes, variable search intensity, and the lack of a fixed survey point for characterizing non-detection. In order to account for these issues, we modified an existing spatially explicit, capture–recapture model for camera trap data to account for variable search intensity and the lack of fixed, georeferenced trap locations. We applied this modified model to a fisher (Martes pennanti) dataset from the Sierra National Forest, California, and compared the results (12.3 fishers/100 km2) to more traditional density estimates.We then evaluated model performance using simulations at 3 levels of population density. Simulation results indicated that estimates based on the posterior mode were relatively unbiased. We believe that this approach provides a flexible analytical framework for reconciling the inconsistencies between detector dog survey data and density estimation procedures.

Keywords: Bayesian, density, fisher, Martes pennanti, scat detector dogs, WinBUGS

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Thompson, Craig M.; Royle, J. Andrew; Garner, James D. 2012. A framework for inference about carnivore density from unstructured spatial sampling of scat using detector dogs. Journal of Wildlife Management 76: 863-871.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.