Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

Title: Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric

Author: Li, Jinghao; Hunt, John F.; Cai, Zhiyong; Zhou, Xianyan;

Date: 2013

Source: Composites: Part B, Volume 53, 2013; pp. 17–24.

Publication Series: Scientific Journal (JRNL)

Description: This paper presents analysis of a 3-dimensional engineered structural panel (3DESP) having a tri-axial core structure made from phenolic impregnated laminated-paper composites with and without high strength composite carbon-fiber fabric laminated to the outside of both faces. Both I-beam equations and finite element method were used to analyze four-point bending of the panels. Comparisons were made with experimental panels. In this study, four experimental panels were fabricated and analyzed to determine the influence of the carbon-fiber on bending performance. The materials properties for finite element analyses (FEA) and I-beam equations were obtained from either the manufacturer or in-house material tensile tests. The results of the FEA and I-beam equations were used to compare with the experimental 3DESP four-point bending tests. The maximum load, face stresses, shear stresses, and apparent modulus of elasticity were determined. For the I-beam equations, failure was based on maximum stress values. For FEA, the Tsai-Wu strength failure criterion was used to determine structural materials failure. The I-beam equations underestimated the performance of the experimental panels. The FEA-estimated load values were generally higher than the experimental panels exhibiting slightly higher panel properties and load capacity. The addition of carbon-fiber fabric to the face of the panels influenced the failure mechanism from face buckling to panel shear at the face–rib interface. FEA provided the best comparison with the experimental bending results for 3DESP.

Keywords: A. Laminates, A. Carbon fiber, C.Finite element analysis (FEA) D. Mechanical testing

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Li, Jinghao; Hunt, John F.; Cai, Zhiyong; Zhou, Xianyan. 2013. Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric. Composites: Part B. 53: 17–24.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.