Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (214 KB)

Title: Sampling and modeling riparian forest structure and riparian microclimate

Author: Eskelson, Bianca N.I.; Anderson, Paul D.; Temesgen, Hailemariam.;

Date: 2013

Source: In: Anderson, P.D.; Ronnenberg, K.L., eds. Density management in the 21st century: west side story. Gen. Tech. Rep. PNW-GTR-880. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station: 126–135.

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: Riparian areas are extremely variable and dynamic, and represent some of the most complex terrestrial ecosystems in the world. The high variability within and among riparian areas poses challenges in developing efficient sampling and modeling approaches that accurately quantify riparian forest structure and riparian microclimate. Data from eight stream reaches that are part of the Density Management Study were used in a variety of recent studies that explored sampling and modeling approaches for riparian forest structure and microclimate, and the results are summarized here. When sixteen sampling alternatives were compared based on their performance at accurately estimating the number of conifer trees per hectare, conifer basal area per hectare, and height-to diameter ratio in headwater stream reaches, rectangular strip-plots outperformed all other plot shapes. Strip-plots oriented perpendicular to the stream generally outperformed strip-plots parallel to the stream. Understory vegetation layers form a critical component of forest ecosystems. Hence, accurate estimation of their attributes (e.g., percent shrub cover) is gaining increasing importance. Percent shrub cover was modeled as a function of distance to stream and canopy leaf area index using techniques that easily accounted for spatial dependence within and among riparian areas. The distinct ecological processes, habitats, and biodiversity of riparian areas are due in part to microclimate characteristics such as air temperature (Tair) and relative humidity (RH) that differ from upland forests. Improved sampling designs and predictive models are needed to characterize riparian microclimates and their response to forest management. Height above stream and distance to stream were found to be important covariates in predicting mean maximum Tair in riparian areas. For small sample sizes, optimized sample patterns for Tair outperformed systematic sample patterns. Mean maximum Tair and mean minimum RH are strongly correlated, and mean minimum RH can be modeled as a function of mean maximum Tair and other covariates such as height above stream. Mixed eff ects models can account for within- and among-stream reach variability in RH. Application of these results can improve the quantitative estimates and reduce the costs associated with riparian forest structure and microclimate monitoring efforts.

Keywords: relative humidity, air temperature, shrub cover, mixed eff ects models, copula models, optimized sampling design.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Eskelson, Bianca N.I.; Anderson, Paul D.; Temesgen, Hailemariam. 2013. Sampling and modeling riparian forest structure and riparian microclimate. In: Anderson, P.D.; Ronnenberg, K.L., eds. Density management in the 21st century: west side story. Gen. Tech. Rep. PNW-GTR-880. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station: 126–135.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.