Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.3 MB)

Title: Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest

Author: Jakubowksi, Marek K.; Guo, Qinghua; Collins, Brandon; Stephens, Scott; Kelly, Maggi.;

Date: 2013

Source: Photogrammetric Engineering and Remote Sensing

Publication Series: Scientific Journal (JRNL)

Description: We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m2), discrete return, small-footprint lidar data, along with multispectral imagery. Stand structure metric predictions generally decreased with increased canopy penetration. While the general fuel types were predicted accurately, specific surface fuel model predictions were poor (76 percent and "50 percent correct classification, respectively) using all algorithms. These fuel components are critical inputs for wildfire behavior modeling, which ultimately support forest management decisions. This comprehensive examination of the relative utility of lidar and optical imagery will be useful for forest science and management.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Jakubowksi, Marek K.; Guo, Qinghua; Collins, Brandon; Stephens, Scott; Kelly, Maggi. 2013. Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest. Photogrammetric Engineering and Remote Sensing. 79(1): 37-49.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.