Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1004.0 KB bytes)

Title: Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest

Author: Wood, Tana; Silver, W. L.;

Date: 2012

Source: Global Biogeochemical Cycles 26:GB3005. doi:10.1029/2010GB004014

Publication Series: Scientific Journal (JRNL)

Description: [1] Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and indirectly through changes in nutrient availability. We used throughfall exclusion shelters to determine effects of short-term (3 month) drought on trace gas fluxes and nutrient availability in humid tropical forests in Puerto Rico. Exclusion and control plots were replicated within and across three topographic zones (ridge, slope, valley) to account for spatial heterogeneity typical of these ecosystems. Throughfall exclusion reduced soil moisture in all sites and lowered exchangeable phosphorus (P) on ridges and slopes. Drought decreased soil carbon dioxide (CO2) emissions by 30% in ridge sites and 28% in slope sites, and increased net methane (CH4) consumption by 480% in valley sites. Both valley and ridge sites became net nitrous oxide (N2O) sinks in response to soil drying. Emissions of CO2 and N2O, as well as CH4 consumption were positively related to exchangeable P and the nitrate:ammonium ratio. These findings suggest that drought has the potential to decrease net trace gas emissions from humid tropical forest soils. The differential response of trace gas emissions and nutrients from different topographic zones to drought underscores the complexity of biogeochemical cycling in these ecosystems and the importance of considering spatial heterogeneity when estimating whole system responses.

Keywords: soils, trace gas fluxes, tropical forest, drought, Puerto Rico, nutrient availability, carbon

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Wood, T. E.; Silver, W. L. 2012. Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest. Global Biogeochemical Cycles 26:GB3005. doi:10.1029/2010GB004014.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.