Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (561 KB)

Title: A framework for identifying carbon hotspots and forest management drivers

Author: Timilsina, Nilesh; Escobedo, Francisco J.; Cropper, Wendell P. Jr.; Abd-Elrahman, Amr; Brandeis, Thomas; Delphin, Sonia; Lambert, Samuel;

Date: 2013

Source: Journal of Environmental Management 114:293–302

Publication Series: Scientific Journal (JRNL)

Description: Spatial analyses of ecosystem system services that are directly relevant to both forest management decision making and conservation in the subtropics are rare. Also, frameworks that identify and map carbon stocks and corresponding forest management drivers using available regional, national, and international-level forest inventory datasets could provide insights into key forest structural characteristics and management practices that are optimal for carbon storage. To address this need we used publicly available USDA Forest Service Forest Inventory and Analysis data and spatial analyses to develop a framework for mapping “carbon hotspots” (i.e. areas of significantly high tree and understory above-ground carbon stocks) across a range of forest types using the state of Florida, USA as an example. We also analyzed influential forest management variables (e.g. forest types, fire, hurricanes, tenure, management activities) using generalized linear mixed modeling to identify drivers associated with these hotspots. Most of the hotspots were located in the northern third of the state some in peri-urban areas, and there were no identifiable hotspots in South Florida. Forest silvicultural treatments (e.g. site preparation, thinning, logging, etc) were not significant predictors of hotspots. Forest types, site quality, and stand age were however significant predictors. Higher site quality and stand age increased the probability of forests being classified as a hotspot. Disturbance type and time since disturbance were not significant predictors in our analyses. This framework can use globally available forest inventory datasets to analyze and map ecosystems service provision areas and bioenergy supplies and identify forest management practices that optimize these services in forests.

Keywords: Hotspot analysis, forest carbon, Florida, spatial statistics, ecosystem service drivers, forest disturbance

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Timilsina, Nilesh; Escobedo, Francisco J.; Cropper, Wendell P., Jr.; Abd-Elrahman, Amr; Brandeis, Thomas; Delphin, Sonia; Lambert, Samuel 2013. A framework for identifying carbon hotspots and forest management drivers. Journal of Environmental Management 114:293–302.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.