Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (875 KB)

Title: Large landscape conservation-synthetic and real-world datasets

Author: Dilkina, Bistra; Lai, Katherine; Le Bras, Ronan; Xue, Yexiang; Gomes, Carla P.; Sabharwal, Ashish; Suter, Jordan; McKelvey, Kevin S.; Schwartz, Michael K.; Montgomery, Claire;

Date: 2013

Source: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. 27: 1369-1372.

Publication Series: Paper (invited, offered, keynote)

Description: Biodiversity underpins ecosystem goods and services and hence protecting it is key to achieving sustainability. However, the persistence of many species is threatened by habitat loss and fragmentation due to human land use and climate change. Conservation efforts are implemented under very limited economic resources, and therefore designing scalable, cost-efficient and systematic approaches for conservation planning is an important and challenging computational task. In particular, preserving landscape connectivity between good habitat has become a key conservation priority in recent years. We give an overview of landscape connectivity conservation and some of the underlying graph-theoretic optimization problems. We present a synthetic generator capable of creating families of randomized structured problems, capturing the essential features of real-world instances but allowing for a thorough typical-case performance evaluation of different solution methods. We also present two large-scale real-world datasets, including economic data on land cost, and species data for grizzly bears, wolverines and lynx.

Keywords: landscape conservation, datasets, biodiversity

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Dilkina, Bistra; Lai, Katherine; Le Bras, Ronan; Xue, Yexiang; Gomes, Carla P.; Sabharwal, Ashish; Suter, Jordan; McKelvey, Kevin S.; Schwartz, Michael K.; Montgomery, Claire. 2013. Large landscape conservation-synthetic and real-world datasets. Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. 27: 1369-1372.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.