Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (624 KB)

Title: Climate-driven tree mortality: insights from the pinon pine die-off in the United States

Author: Hicke, Jeffrey A.; Zeppel, Melanie J. B.;

Date: 2013

Source: New Phytologist. 200: 301-303.

Publication Series: Scientific Journal (JRNL)

Description: The global climate is changing, and a range of negative effects on plants has already been observed and will likely continue into the future. One of the most apparent consequences of climate change is widespread tree mortality (Fig. 1). Extensive tree die-offs resulting from recent climate change have been documented across a range of forest types on all forested continents (Allen et al., 2010). The exact physiological mechanisms causing this mortality are not yet well understood (e.g. McDowell, 2011), but they are likely caused by reductions in precipitation and increases in temperatures and vapor pressure deficit (VPD) that lead to enhanced soil moisture deficits and/or increased atmospheric demand of water from plants. When plant stomata close because of a lack of available soil water or high atmospheric demand, the plant cannot photosynthesize (leading to carbon (C) starvation) and/or cannot move water from roots to leaves (hydraulic limitation); either mechanism reduces growth, potentially leading directly to mortality and/or to reduced capacity to defend against insect or pathogen attack. Regardless of the mechanisms, few studies have documented relationships between climate and large-scale tree die-offs. In this issue of New Phytologist (pp. 413-421) Clifford et al. address this gap by reporting on a study of climate conditions during widespread pinon pine mortality that occurred in the early 2000s. This die-off occurred across 1.2 Mha of the southwestern United States (Breshears et al., 2005) and killed up to 350 million pinon pines (Meddens et al., 2012; Fig. 2). A combination of low precipitation, high temperatures and VPD, and bark beetles was reported to cause the mortality (Breshears et al., 2005).

Keywords: climate change, pinon, temperature, vapor pressure deficit (VPD)

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Hicke, Jeffrey A.; Zeppel, Melanie J. B. 2013. Climate-driven tree mortality: insights from the pinon pine die-off in the United States. New Phytologist. 200: 301-303.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.