Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (808 KB)

Title: Conservation status of a threatened tree species: establishing a baseline for restoration of Juglans cinerea L

Author: Parks, Amanda M.; Jenkins, Michael A.; Woeste, Keith E.; Ostry, Michael E.;

Date: 2013

Source: Natural Areas Journal. 33(4): 413-426.

Publication Series: Scientific Journal (JRNL)

Description: To mitigate the loss of native tree species threatened by non-native pathogens, managers need to better understand the conservation status of remaining populations and the conditions that favor successful regeneration. Populations of Juglans cinerea L. (butternut), a wide-ranging riparian species, have been devastated by butternut canker, a disease caused by a non-native fungal pathogen. We assessed J. cinerea within Great Smoky Mountains National Park (GSMNP) to determine post-disease survivorship and health, recruitment history, environmental conditions associated with survival, and the extent of hybridization with a non-native congener. Monitoring records were used to locate and collect data for 207 J. cinerea trees in 19 watersheds. Tree cores were collected from a subset of individuals to assess recruitment history. We sampled vegetation plots within areas that contained J. cinerea to assess site conditions and overstory species composition of characteristic habitat. We collected leaf samples for genetic analysis to determine the frequency of hybridization. Our reassessment of monitoring records suggests that J. cinerea abundance in GSMNP has declined due to butternut canker and thirty years of poor regeneration. Populations displayed continuous recruitment following Park establishment (1934) until around 1980, after which regeneration declined drastically. Ordination analysis revealed that J. cinerea in the contemporary forest was associated with greater distance from homesites and reduced basal area of competing species. Hybrids comprised a small portion of sampled trees. The presence of healthy trees and low rate of hybridization suggest that these trees may contribute to the development of disease-resistant genotypes for future restoration efforts.

Keywords: butternut, cohort structure, disturbance regime, forest disease, fungal pathogen, hybridization, mortality, recruitment history

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Parks, Amanda M.; Jenkins, Michael A.; Woeste, Keith E.; Ostry, Michael E. 2013. Conservation status of a threatened tree species: establishing a baseline for restoration of Juglans cinerea L. in the Southern Appalachian Mountains, USA. Natural Areas Journal. 33(4): 413-426.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.