Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.3 MB)

Title: Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL

Author: Leu, Shao-Yuan; Zhu, J.Y.; Gleisner, Roland; Sessions, John; Marrs, Gevan;

Date: 2013

Source: Biomass and Bioenergy, Volume 59, 2013; pp. 393-401.

Publication Series: Scientific Journal (JRNL)

Description: Forest harvest residues can be a cost-effective feedstock for a biorefinery, but the high lignin content of forest residues is a major barrier for enzymatic sugar production. Sulfite pretreatment to overcome strong recalcitrance of lignocelluloses (SPORL) was applied to a Douglas-fir (Pseudotsuga menziesii (Mirb) Franco var. menziesii) forest residue in a range of sulfite and acid loadings at 165 °C for 75 min with liquid to wood ratio of 3:1. Sodium bisulfite and sulfuric acid charge as mass fraction of oven dry biomass of 12% and 2.21%, respectively, was optimal in terms of enzymatic cellulose saccharification, sugar yield and formation of hydroxymethylfurfural (HMF) and furfural. Enzymatic glucose yield was 345 g kg-1, or equivalent to 82.3% of theoretical at a cellulase (CTec2) dosage of 15 filter paper unit (FPU) per gram of glucan. HMF and furfural formation were low at approximately 2.5 g L-1 each in the pretreatment hydrolyzate. Delignification was important to achieve good cellulose saccharification efficiency, however, approximately 80-90% hemicellulose removal is also required. Substrate enzymatic digestibility (SED) was found to correlate to a combined parameter Z(CHF) of delignification and hemicellulose dissolution well, suggesting that the combined hydrolysis factor (CHF) - a pretreatment severity measure - can be used to predict saccharification of forest residue for scale-up studies to reduce numbers of experiments.

Keywords: Forest harvest residue, Pretreatment, Enzymatic hydrolysis/saccharification, Biofuel, Pretreatment severity

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Leu, Shao-Yuan; Zhu, J.Y.; Gleisner, Roland; Sessions, John; Marrs, Gevan. 2013. Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL. Biomass and Bioenergy, Volume 59, 2013; pp. 393-401.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.