Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Individual tree diameter, height, and volume functions for longleaf pine

Author: Gonzalez-Benecke, Carlos A.; Gezan, Salvador A.; Martin, Timothy A.; Cropper, Wendell P. Jr.; Samuelson, Lisa J.; Leduc, Daniel J.;

Date: 2014

Source: Forest Science 60(1): 43-56

Publication Series: Scientific Journal (JRNL)

Description: Currently, little information is available to estimate individual tree attributes for longleaf pine (Pinus palustris Mill.), an important tree species of the southeastern United States. The majority of available models are local, relying on stem diameter outside bark at breast height (dbh, cm) and not including stand-level parameters. We developed a set of individual tree equations to predict tree height (H, m), stem diameter inside bark at 1.37 m height (dbhIB, cm), stem volume outside bark (VOB, m3), and stem volume inside bark (VIB, m3), as well as functions to determine merchantable stem volume ratio (both outside and inside bark) from the stump to any top diameter. Local and general models are presented for each tree attribute. General models included stand-level parameters such as age, site index, dominant height, basal area, and tree density. The user should decide which model type to use, depending on data availability and level of accuracy desired. To our knowledge, this is the first comprehensive individual tree-level set of equations reported for longleaf pine trees, including local and general models, which can be applied to longleaf pine trees over a large geographical area and across a wide range of ages and stand characteristics. The system presented here provides important new tools for supporting future longleaf pine management decisions.

Keywords: Pinus palustris, individual-tree functions, general models, stand variables, merchantable stem volume ratio

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Gonzalez-Benecke, Carlos A.; Gezan, Salvador A.; Martin, Timothy A.; Cropper, Wendell P., Jr.; Samuelson, Lisa J.; Leduc, Daniel J. 2014. Individual tree diameter, height, and volume functions for longleaf pine. Forest Science. 60(1): 43-56.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.