Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (827 KB)

Title: Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films

Author: Baez, Carlos; Considine, John; Rowlands, Robert;

Date: 2014

Source: Cellulose Volume 21, 2014; pp. 347-356.

Publication Series: Scientific Journal (JRNL)

Description: Nanofibrillated cellulose (NFC) is a renewable and biodegradable fibril that possesses high strength and stiffness resulting from high level hydrogen bonding. Films made from NFC shrink and distort as they transition from a wet state (20 wt% solids) to a state of moisture equilibrium (90 wt% solids at 50 % RH, 23 °C). Material distortions are driven by development of moisture gradients within the fibril network and effectively reduce mechanical performance. For this study, NFC was extracted from softwood holocellulose by first employing a chemical pretreatment [(2,2,6,6tetramethylpiperidin-1-yl)oxyl catalyzed oxidation] followed by mechanical fibrillation using ultrasound energy. To assess the problem of film distortion, neat NFC films were dried at 50 % RH, 23 °C under one of the following three restraint conditions: fully restrained, partially restrained, and uniaxially drawn. The influence of restraint condition on the resulting physical and mechanical properties was evaluated. Raman and X-ray results showed that fibrils in the uniaxially drawn specimens tended to align with the drawing axis, whereas no in-plane orientation effects were observed for the fully or partially restrained specimens. Fully restrained specimens had a respective strength and stiffness of 222 MPa and 14 GPa in every (in-plane) direction. However, samples that were wet-drawn to a 30 % strain level had a respective strength and stiffness of 474 MPa and 46 GPa in the direction of draw. Mechanical properties for axially drawn specimens had both fibril alignment and fibril straightening contributions.

Keywords: nanofibrillated cellulose, mocrofibrillated cellulose, nanocellulose restraint drying, fiber orientation, cellulose nanofibers

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Baez, Carlos; Considine, John; Rowlands, Robert 2014. Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose Volume 21, 2014; pp. 347-356.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.