Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.3 MB)

Title: Thermomechanical Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals: A Dynamic Mechanical and Nanoindentation Study

Author: Ago, Mariko; Jakes, Joseph E.; Rojas, Orlando J.;

Date: 2013

Source: ACS Appl. Mater. Interfaces, Volume 5, 2013; pp. 11768-11776.

Publication Series: Scientific Journal (JRNL)

Description: We produced defect-free electrospun fibers from aqueous dispersions of lignin, poly(vinyl alcohol) (PVA), and cellulose nanocrystals (CNCs), which were used as reinforcing nanoparticles. The thermomechanical performance of the lignin-based electrospun fibers and the spin-coated thin films was improved when they were embedded with CNCs. Isochronal dynamic mechanical analysis (DMA) was used to assess the viscoelastic properties of the lignin:PVA electrospun fiber mats loaded with CNCs. DMA revealed that ƒ¿ relaxation processes became less prominent with an increased lignin content, an effect that correlated with the loss tangent (tan ƒÂ = E��/E�Œ) and ƒ¿ peak (Tg) that shifted to higher temperatures. This can be ascribed to the restraint of the segmental motion of PVA in the amorphous regions caused by strong intermolecular interactions. The reinforcing effect and high humidity stability attained by addition of CNCs (5, 10, or 15 wt %) in the multicomponent fiber mats were revealed. Nanoindentation was performed to assess the elastic modulus and hardness of as-prepared and cross-section surfaces of spin-coated lignin:PVA (75:25) films loaded with CNC. The roperties of the two surfaces differed, and only the trend in cross-section elastic modulus correlated with DMA results. After addition of 5 wt % CNCs, both the DMA and nanoindentation elastic modulus remained constant, while after addition of 15 wt % CNCs, both increased substantially. An indentation size effect was observed in the nanoindentation hardness, and the results provided insight into the effect of addition of CNCs on the microphysical processes controlling the yield behavior in the composites.

Keywords: cellulose nanocrystals, lignin, nanofibers, electrospinning, dynamic mechanical analysis, nanoindentation, thermomechanical properties, lignin films

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ago, Mariko; Jakes, Joseph E.; Rojas, Orlando J. 2013. Thermomechanical Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals: A Dynamic Mechanical and Nanoindentation Study. ACS Appl. Mater. Interfaces, Volume 5, 2013; pp. 11768-11776.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.