Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (545 KB)

Title: Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements

Author: McFarlane, Karis J.; Torn, Margaret S.; Hanson, Paul J.; Porras, Rachel C.; Swanston, Christopher W.; Callaham, Mac A.; Guilderson, Thomas P.;

Date: 2013

Source: Biogeochemistry 112:457-476

Publication Series: Scientific Journal (JRNL)

Description: Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained.We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy;MI-Fine, loamy); Bartlett Experimental Forest (NH-BF); Harvard Forest (MA-HF); and Baskett Wildlife Recreation and Education Area (MO-OZ). We quantified soil carbon stocks and measured bulk soil radiocarbon to at least 60 cm depth. We determined surface (0-15 cm) soil carbon distribution and turnover times in free light (unprotected), occluded light (intra-aggregate), and dense (mineral-associated) soil fractions. Total soil carbon stocks ranged from 55 ± 4 to 229 ± 42 Mg C ha-1 and were lowest at MI-Coarse and MO-OZ and highest at MI-Fine and NH-BF. Differences in climate only partly explained differences in soil organic matter 14C and mean turnover times, which were 75-260 year for free-light fractions, 70-625 year for occluded-light fractions, and 90-480 year for dense fractions. Turnover times were shortest at the warmest site, but longest at the northeastern sites (NH-BF and MA-HF), rather than the coldest sites (MI-Coarse and MI-Fine). Soil texture, mineralogy, drainage, and macrofaunal activity may be at least as important as climate in determining soil carbon dynamics in temperate broadleaf forests.

Keywords: 14C, Carbon cycle, Soil carbon, Soil fractionation, Soil fauna, Terrestrial carbon cycle

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


McFarlane, Karis J.; Torn, Margaret S.; Hanson, Paul J.; Porras, Rachel C.; Swanston, Christopher W.; Callaham, Mac A., Jr.; Guilderson, Thomas P. 2013. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry 112:457-476.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.