Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.6 MB)

Title: Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: a case study in the Lake Tahoe Basin

Author: Loudermilk, Louise; Stanton, Alison; Scheller, Robert M.; Dilts, Thomas E.; Weisberg, Peter J.; Skinner, Carl; Yang, Jian;

Date: 2014

Source: Forest Ecology and Management 323: 114-125

Publication Series: Scientific Journal (JRNL)

Description: Fuel-reduction treatments are used extensively to reduce wildfire risk and restore forest diversity and function. In the near future, increasing regulation of carbon (C) emissions may force forest managers to balance the use of fuel treatments for reducing wildfire risk against an alternative goal of C sequestration. The objective of this study was to evaluate how long-term fuel treatments mitigate wildfires and affect forest C. For the Lake Tahoe Basin in the central Sierra Nevada, USA, fuel treatment efficiency was explored with a landscape-scale simulation model, LANDIS-II, using five fuel treatment scenarios and two (contemporary and potential future) fire regimes. Treatment scenarios included applying a combination of light (hand) and moderate (mechanical) forest thinning continuously through time and transitioning from these prescriptions to a more mid-seral thinning prescription, both on a 15 and 30 year rotation interval. In the last scenario, fuel treatments were isolated to around the lake shore (nearby urban settlement) to simulate a low investment alternative were future resources may be limited. Results indicated that the forest will remain a C sink regardless of treatment or fire regime simulated, due to the landscape legacy of historic logging. Achievement of a net C gain required decades with intensive treatment and depended on wildfire activity: Fuel treatments were more effective in a more active fire environment, where the interface between wildfires and treatment areas increased and caused net C gain earlier than as compared to our scenarios with less wildfire activity. Fuel treatments were most effective when continuously applied and strategically placed in high ignition areas. Treatment type and re-application interval were less influential at the landscape scale, but had notable effects on species dynamics within management units. Treatments created more diverse forest conditions by shifting dominance patterns to a more mixed conifer system, with a higher proportion of fire-tolerant species. We demonstrated that a small amount of wildfire on the landscape resulted in significant changes in the C pool, and that strategically placed fuel treatments substantially reduced wildfire risk, increased fire resiliency of the forest, and is beneficial for long-term C management. Implications for landscape management included consideration for prioritization of treatment areas and creating ideal re-entry schedules that meet logistic, safety, and conservation goals. In forests with a concentrated wildland urban interface, fuel treatments may be vital for ensuring human welfare and enhancing forest integrity in a fire-prone future.

Keywords: Fuel treatments, Wildfire, Carbon management, Effectiveness, LANDIS-II, Mixed-conifer

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Loudermilk, E. Louise; Stanton, Alison; Scheller, Robert M.; Dilts, Thomas E.; Weisberg, Peter J.; Skinner, Carl; Yang, Jian. 2014. Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: a case study in the Lake Tahoe Basin. Forest Ecology and Management 323: 114-125.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.