Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (700.0 KB bytes)

Title: Hydrological processes at the urban residential scale

Author: Xiao, Q.; McPherson, E.G.; Simpson, J.R.; Ustin, S.L.;

Date: 2007

Source: Hydrological Processes 21: 2174-2188

Publication Series: General Technical Report (GTR)

Description: In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different best management practices (BMPs). This model simulates hydrologic processes using an hourly interval for over a full year or for specific storm events. The model was applied to treatment and control single-family residential parcels in Los Angeles, California. Data collected from the control and treatment sites over 2 years were used to calibrate and validate the model. Annual storm runoff to the street was eliminated by 97% with installation of rain gutters, a driveway interceptor, and lawn retention basin. Evaluated individually, the driveway interceptor was the most effective BMP for storm runoff reduction (65%), followed by the rain gutter installation (28%), and lawn converted to retention basin (12%). An 11 m3 cistern did not substantially reduce runoff, but provided 9% of annual landscape irrigation demand. Simulated landscape irrigation water use was reduced 53% by increasing irrigation system efficiency, and adjusting application rates monthly based on plant water demand. The model showed that infiltration and surface runoff processes were particularly sensitive to the soil's physical properties and its effective depth. Replacing the existing loam soil with clay soil increased annual runoff discharge to the street by 63% when climate and landscape features remained unchanged.

Keywords: hydrologic processes, residential scale, best management practice, urban runoff reduction, landscape irrigation water use

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Xiao, Q.; McPherson, E. G.; Simpson, J. R.; Ustin, S. L. 2007. Hydrological processes at the urban residential scale. Hydrological Processes 21: 2174-2188.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.