Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.1 MB)

Title: Divergent carbon dynamics under climate change in forests with diverse soils, tree species, and land use histories

Author: Scheller, Robert M.; Kretchun, Alec M.; Van Tuyl, Steve; Clark, Kenneth L.; Lucash, Melissa S.; Hom, John.;

Date: 2012

Source: Ecosphere. 3(11): art110.

Publication Series: Scientific Journal (JRNL)

Description: Accounting for both climate change and natural disturbances—which typically result in greenhouse gas emissions—is necessary to begin managing forest carbon sequestration. Gaining a complete understanding of forest carbon dynamics is, however, challenging in systems characterized by historic over-utilization, diverse soils and tree species, and frequent disturbance. In order to elucidate the cascading effects of potential climate change on such systems, we projected forest carbon dynamics, including soil carbon changes, and shifts in tree species composition as a consequence of wildfires and climate change in the New Jersey pine barrens (NJPB) over the next 100 years. To do so, we used the LANDIS-II succession and disturbance model combined with the CENTURY soil model. The model was calibrated and validated using data from three eddy flux towers and the available empirical or literature data. Our results suggest that climate change will not appreciably increase fire sizes and intensity. The recovery of C stocks following substantial disturbances at the turn of the 20th century will play a limited but important role in this system. In areas characterized by high soil water holding capacity, reduced soil moisture may lead to lower total C and these forests may switch from being carbon sinks to becoming carbon neutral towards the latter part of the 21st century. In contrast, other areas characterized by lower soil water holding capacity and drought tolerant species are projected to experience relatively little change over the next 100 years. Across all soil types, however, the regeneration of many key tree species may decline leading to longer-term (beyond 2100) risks to forest C. These divergent responses were largely a function of the dominant tree species, and their respective temperature and soil moisture tolerances, and soil water holding capacity. In summary, the system is initially C conservative but by the end of the 21st century, there is increasing risk of de-stabilization due to declining growth and regeneration.

Keywords: carbon sequestration, CENTURY, forest simulation model, heterotrophic respiration, LANDIS-II, New Jersey, soil carbon, wildfire

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Scheller, Robert M.; Kretchun, Alec M.; Van Tuyl, Steve; Clark, Kenneth L.; Lucash, Melissa S.; Hom, John. 2012. Divergent carbon dynamics under climate change in forests with diverse soils, tree species, and land use histories. Ecosphere. 3(11): art110.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.