Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (209.0 KB bytes)

Title: Performance of species richness estimators across assemblage types and survey parameters

Author: Reese, Gordon C.; Wilson, Kenneth R.; Flather, Curtis H.;

Date: 2014

Source: Global Ecology and Biogeography. 23: 585-594.

Publication Series: Scientific Journal (JRNL)


Aim: A raw count of the species encountered across surveys usually underestimates species richness. Statistical estimators are often less biased. Nonparametric estimators of species richness are widely considered the least biased, but no particular estimator has consistently performed best. This is partly a function of estimators responding differently to assemblage-level factors and survey design parameters. Our objective was to evaluate the performance of raw counts and nonparametric estimators of species richness across various assemblages and with different survey designs. Location: We used both simulated and published field data. Methods: We evaluated the bias, precision and accuracy of raw counts and 13 nonparametric estimators using simulations that systematically varied assemblage characteristics (number of species, species abundance distribution, total number of individuals, spatial configuration of individuals and species detection probability), sampling effort and survey design. Results informed the development of an estimator selection framework that we evaluated with field data. Results: When averaged across assemblages, most nonparametric estimators were less negatively biased than a raw count. Estimators based on the similarity of repeated subsets of surveys were most accurate and their accumulation curves appeared to reach asymptotes fastest. Number of species, species abundance distribution and effort had the largest effects on performance, ultimately by affecting the proportion of the species pool contained in a sample. Our estimator selection framework showed promising results when applied to field data. Main conclusions: A raw count of the number of species in an area is far from the best estimate of true species richness. Nonparametric estimators are less biased. Newer largely unused, estimators perform better than more well known and longer established counterparts under certain conditions. Given that there is generally a trade-off between bias and precision, we believe that estimator variance, which is often not reported when presenting species richness estimates, should always be included.


Keywords: biodiversity, community ecology, nonparametric estimator, sample coverage, selection framework, simulation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Reese, Gordon C.; Wilson, Kenneth R.; Flather, Curtis H. 2014. Performance of species richness estimators across assemblage types and survey parameters. Global Ecology and Biogeography. 23: 585-594.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.