Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (352 KB)

Title: Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation

Author: McRoberts, Ronald E.; Liknes, Greg C.; Domke, Grant M.;

Date: 2014

Source: Forest Ecology and Management. 331: 12-18.

Publication Series: Scientific Journal (JRNL)

Description: For most national forest inventories, the variables of primary interest to users are forest area and growing stock volume. The precision of estimates of parameters related to these variables can be increased using remotely sensed auxiliary variables, often in combination with stratified estimators. However, acquisition and processing of large amounts of remotely sensed data can be costly and laborious, and stratified estimation requires construction of strata and satisfaction of within-stratum sample size constraints. An alternative to both challenges is to use an existing remote sensing-based, spatial product with the model-assisted estimators. The latter estimators use continuous auxiliary information directly rather than their aggregation into strata and are not subject to such severe sample size constraints. The objective of the study was to compare estimates of mean proportion forest area and mean growing stock volume per unit area obtained using both stratified and model assisted estimators with a remote sensing-based percent tree canopy cover map as auxiliary information. For a study area in Minnesota, USA, the primary conclusion was that estimates obtained with both sets of estimators were acceptably precise, but that the model-assisted estimators were easier to implement and facilitated aggregation of estimates from smaller sub-areas to estimates for larger areas.

Keywords: Stratified estimator, Model-assisted regression estimator, Precision, Forest inventory, Auxiliary information

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


McRoberts, Ronald E.; Liknes, Greg C.; Domke, Grant M. 2014. Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation. Forest Ecology and Management. 331: 12-18.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.