Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (282 KB)

Title: Influence of repeated canopy scorching on soil CO2 efflux

Author: Aubrey, DP; Martazavi, B; O'Brien, Joseph; McGee, JD; Hendricks, JJ; Kuehn, KA; Mitchell, RJ;

Date: 2012

Source: Forest Ecology and Management

Publication Series: Scientific Journal (JRNL)

Description: Forest ecosystems experience various disturbances that can affect belowground carbon cycling to different degrees. Here, we investigate if successive annual foliar scorching events will result in a large and rapid decline in soil CO2 efflux, similar to that observed in girdling studies. Using the fire-adapted longleaf pine (Pinus palustris Mill.) tree species, we experimentally manipulated foliar leaf area and thus, canopy photosynthesis, via foliar scorching over two consecutive growing seasons. We monitored the effect of scorching on soil CO2 efflux and fine root production, mortality, standing crop, and nitrogen (N) and non-structural carbohydrate (i.e. sugar and starch) concentrations. Despite an immediate 80% reduction in foliar leaf area and sap flow rates from the scorch treatment, there was no effect on soil CO2 efflux in either year. Likewise, the cumulative soil CO2 flux after two scorch treatments remained comparable to that of the control treatment, even after assuming a 100% decline in the autotrophic component for the month following the two scorching events. Fine root standing crop was not diminished by scorching because both fine root production and mortality increased commensurately in the scorch treatment. Fine root N and sugar concentrations were not diminished by scorching, but starch concentrations of 5th order roots decreased after the second scorching treatment, presumably because starch was mobilized from larger roots to maintain more metabolically active 1st order roots. The lack of response observed in soil CO2 efflux following successive canopy scorches differs from the response often observed after girdling and suggests that the carbohydrate reserves of longleaf pine trees are sufficient to maintain root metabolism for extended periods even after an extreme canopy perturbation. We propose that tree species in ecosystems that experience frequent disturbance may allocate more carbon to storage than those in less disturbed ecosystems, and as a result are more resilient to disturbances that affect photosynthate supply. Such species should be capable of maintaining belowground autotrophic respiration during periods of minimal or nonexistent carbon assimilation.

Keywords: Belowground autotrophic respiration, Carbohydrate storage reserves, Evolutionary history, Frequent disturbance, Pinus palustris Mill., Soil respiration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Aubrey, D.P.; Mortazavi, B.; O’Brien, J.J.; McGee, J.D.; Hendricks, J.J.; Kuehn, K.A.; Mitchell, R.J 2012. Influence of repeated canopy scorching on soil CO2 efflux. Forest Ecology and Management 282:142-148.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.