Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (634 KB)

Title: Microorganisms in small patterned ground features and adjacent vegetated soils along topographic and climatic gradients in the High Arctic, Canada

Author: Gonzalez, G.; Rivera-Figueroa, F.J.; Gould, W.; Cantrell, S.A.; Pérez-Jiménez, J.R.;

Date: 2014

Source: Open Journal of Soil Science. 4: 47-55

Publication Series: Scientific Journal (JRNL)

Description: In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by cryoturbation, and a broad bioclimatic gradient. We also characterize total biomass of soil microorganisms and the most probable number of bacteria along a topographic gradient within each bioclimatic subzone to evaluate whether differences in topography lead to differences in microbial dynamics at a smaller scale. We found total microbial biomass C, the most probable number of heterotrophic bacteria, and fungal genera vary along this bioclimatic gradient. Microbial biomass C decreased with increasing latitude. Overall, microbial biomass C, MPN and the number of fungal isolates were higher in AVS than in PGFs. The effects which topographic position had on microbial biomass C varied across the bioclimatic gradient as there was no effect of topographic position in Isachsen (subzone A) and Mould Bay (subzone B), when compared to Green Cabin (subzone C, warmer site).There was no effect of topographic position on MPN counts at Mould Bay and Green Cabin. However, in Isachsen, MPN counts were highest in the wet topographic position as compared to the mesic and dry. In conclusion, PGFs seem to decouple the effect climate that might have on the total biomass of soil microorganisms along the bioclimatic gradient; and influence gets ameliorated as latitude increases. Similarly, the effect of topography on the total microbial biomass is significant at the warmest bioclimatic zone of the gradient. Thus, climate and topographic effects on total microbial biomass increase with warmer climate.

Keywords: Soil Microorganisms, High Arctic, Canada, Patterned Features, Microbial Biomass

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Gonzalez, G.; Rivera-Figueroa, F.J.; Gould, W.; Cantrell, S.A.; Pérez-Jiménez, J.R. 2014. Microorganisms in small patterned ground features and adjacent vegetated soils along topographic and climatic gradients in the High Arctic, Canada. Open Journal of Soil Science. 4: 47-55.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.