Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (821 KB)

Title: Sampling affects the detection of genetic subdivision and conservation implications for fisher in the Sierra Nevada

Author: Tucker, Jody M.; Schwartz, Michael K.; Truex, Richard L.; Wisely, Samantha M.; Allendorf, Fred W.;

Date: 2014

Source: Conservation Genetics. 15(1): 123-136.

Publication Series: Scientific Journal (JRNL)

Description: The small population of fisher (Pekania pennanti) in the southern Sierra Nevada is completely geographically and genetically isolated putting it at increased risk of extinction. Previous research using a clustered sampling scheme found a high amount of genetic subdivision within the southern Sierra Nevada population hypothesized to be caused by the Kings River Canyon. In this study, we use a larger and more geographically continuous set of genetic samples (n = 127) than was previously available to test this hypothesis and evaluate the genetic structure of the population. Both spatial and nonspatial population assignment models found three primary genetic clusters with moderate divergence between the clusters (FST = 0.05­0.13) at 10 microsatellite loci. These clusters appear to be associated with areas around the Kings River and Mountain Home State Demonstration Forest. One model also detected additional fine scale subdivision north of the Kings River that may be evidence of founder effects from a recent population expansion. The amount of population subdivision detected in this study is lower than previously found and indicates that while certain landscape features may reduce gene flow, these landscape features may be less of a barrier than initially thought. In the previous work, samples were collected in clusters which can inflate estimates of population structure by increasing the likelihood of oversampling related individuals. This study demonstrates how clustered sampling from a continuously distributed population can affect the assessment of population subdivision and influence conservation implications.

Keywords: fisher, Pekania pennant, isolation by distance, population subdivision, sampling

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Tucker, Jody M.; Schwartz, Michael K.; Truex, Richard L.; Wisely, Samantha M.; Allendorf, Fred W. 2014. Sampling affects the detection of genetic subdivision and conservation implications for fisher in the Sierra Nevada. Conservation Genetics. 15(1): 123-136.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.