Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.3 MB)

Title: Methylmercury dynamics at the upland-peatland interface: Topographic and hydrogeochemical controls

Author: Mitchell, Carl P. J.; Branfireun, Brian A.; Kolka, Randall K.;

Date: 2009

Source: Water Resources Research. 45(2):W02406.

Publication Series: Scientific Journal (JRNL)

Description: Peatlands are important environments for the transformation of atmospherically deposited inorganic mercury into the bioaccumulative form, methylmercury (MeHg), which may accumulate in downstream aquatic biota, particularly in fish. In recent research, it was suggested that MeHg production and/or accumulation ‘‘hot spots’’ at the upland-peatland interface were the result of upland fluxes of sulfate and labile dissolved organic carbon (DOC) into the peatland margin. Along the upland-peatland interface, spatial heterogeneity of "hot spots" was thought to be a result of variations in upland hydrologic interaction with the peatland margin. This hypothesis was tested in this study. Pore water MeHg, sulfate, and dissolved organic carbon (DOC) concentrations were compared in peatland plots at the base of both topographically concave and linear upland subcatcments in Minnesota. Subcatchment contributing areas were 3-8 times larger in the peatland plots adjacent to areas of concave upland topography. Peat pore water MeHg concentrations were significantly higher in these plots. Fluxes of water, sulfate, and dissolved organic carbon (DOC) from the upland hillslope into the peatland margin were also generally much larger than those from below areas of concave upland topography. Taken together, these results suggest that watershed geomorphology plays an important role in controlling chemical fluxes into peatland margins and consequently MeHg production and accumulation. It may thus be possible to delineate areas of high MeHg production and/or accumulation in certain watersheds by using high-resolution topographic data. The resulting MeHg "hot spots" may be important for locally foraging biota and for downstream loading, especially in the spring and fall.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.



Mitchell, Carl P. J.; Branfireun, Brian A.; Kolka, Randall K. 2009. Methylmercury dynamics at the upland-peatland interface: Topographic and hydrogeochemical controls. Water Resources Research. 45(2):W02406.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.