Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (793 KB)

Title: Analysis of airborne LiDAR surveys to quantify the characteristic morphologies of northern forested wetlands

Author: Richardson, Murray C.; Mitchell, Carl P. J.; Branfireun, Brian A.; Kolka, Randall K.;

Date: 2010

Source: Journal of Geophysical Research. 115(G3): 03005.

Publication Series: Scientific Journal (JRNL)

Description: A new technique for quantifying the geomorphic form of northern forested wetlands from airborne LiDAR surveys is introduced, demonstrating the unprecedented ability to characterize the geomorphic form of northern forested wetlands using high-resolution digital topography. Two quantitative indices are presented, including the lagg width index (LWI) which objectively quantifies the lagg width, and the lateral slope index (LSI) which is a proxy measurement for the dome shape or convexity of the wetland ground surface. For 14 forested wetlands in central Ontario, Canada, northwestern Ontario, Canada, and northern Minnesota, United States, these indices were systematically correlated to metrics of topographic setting computed from LiDAR digital elevation models. In particular, these indices were strongly correlated with a Peatland Topographic Index (PTI, r2 = 0.58 and r2 = 0.64, respectively, p < = 0.001) describing the relative influence of upslope contributing area on the hydrology and biogeochemistry of individual wetlands. The relationship between PTI and the LWI and LSI indices was interpreted as geomorphic evolution in response to the spatially varying influence of upslope runoff on subsurface hydrochemistry. Spatial patterns of near-surface pore water chemistry were consistent with this interpretation. Specifically, at four wetland sites sampled extensively for pore water chemistry, the mean and variance of near-surface pore water methylmercury (MeHg) concentrations were higher within the zone of enhanced upland-wetland interactions, as inferred from the LiDAR-derived LWI estimates. Use of LiDAR surveys to measure subtle topographic gradients within wetlands may therefore help quantify the influence of upland-wetland interactions on biogeochemical cycling and export in northern forested landscapes.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Richardson, Murray C.; Mitchell, Carl P. J.; Branfireun, Brian A.; Kolka, Randall K. 2010. Analysis of airborne LiDAR surveys to quantify the characteristic morphologies of northern forested wetlands. Journal of Geophysical Research. 115(G3): 03005.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.