Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.9 MB)

Title: Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States

Author: Yu, Lejiang; Zhong, Shiyuan; Bian, Xindi; Heilman, Warren E.; Andresen, Jeffrey A.;

Date: 2014

Source: International Journal of Climatology. 34(13): 3499-3514.

Publication Series: Scientific Journal (JRNL)

Description: The frequency and timing of frost events and the length of the growing season are critical limiting factors in many human and natural ecosystems. This study investigates the temporal and spatial variability of the date of last spring frost (LSF), the date of first fall frost (FFF), and the length of the frost-free season (FFS) in the Great Lakes region of the United States using two gridded reanalysis datasets for the period of 1980-2010. Across most of the Great Lakes region, there has been a negative trend for the LSF and a positive trend for the FFF, leading to a lengthening of FFS. The three variables vary spatially across the region and exhibit large interannual variability. Empirical orthogonal function (EOF) analyses indicate that the first mode for the three variables, which accounts for about 30% of the total variance, is in phase across most of the Great Lakes region and that it appears to be related to Pacific North American (PNA) pattern in the case of LSF and to Pacific Decadal Oscillation (PDO) in the case of FFF and FFS. The main reason for these connections is that the 200-hPa geopotential height anomaly over North America induced by a Rossby wave train influences the strength of the trough over North America, which in turn affects surface temperatures over the Great Lakes region. The second mode, explaining about 10% of the total variance, mainly shows the out-of-phase variability between the Great Lakes and the surrounding land and it appears to be related to the circumglobal teleconnection (CGT) in the case of LSF and again to PDO in the case of FFF and FFS.

Keywords: frost dates, frost-free season, the Great Lakes region, Pacific Decadal Oscillation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Yu, Lejiang; Zhong, Shiyuan; Bian, Xindi; Heilman, Warren E.; Andresen, Jeffrey A. 2014. Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States. International Journal of Climatology. 34(13): 3499-3514.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.