Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (709 KB)

Title: Future fire probability modeling with climate change data and physical chemistry

Author: Guyette, Richard P.; Thompson, Frank R.; Whittier, Jodi; Stambaugh, Michael C.; Dey, Daniel C.;

Date: 2014

Source: Forest Science. 60(5): 862-870.

Publication Series: Scientific Journal (JRNL)

Description: Climate has a primary influence on the occurrence and rate of combustion in ecosystems with carbon-based fuels such as forests and grasslands. Society will be confronted with the effects of climate change on fire in future forests. There are, however, few quantitative appraisals of how climate will affect wildland fire in the United States. We demonstrated a method for estimating changes in fire probability based on future climate simulations of temperature and precipitation. The probability of a fire occurring in a particular climate was extracted from the Physical Chemistry Fire Frequency Model (PC2FM) and represented the rate of change in fire due to climate. Climate output data from two global climate models (GCMs) were applied to the PC2FM to estimate changes in fire probability. We calculated change in fire frequency and probabilities from the difference between current and future climates and mapped climate-forced percentage change in fire probability under each GCM for the nation at a 1.2 km2 scale. Future fire probability estimates increased in cooler northern and high elevation regions but decreased slightly in some hotter and drier regions of the southwestern United States. Our approach's greatest strength may be reliance on only climate data and the simple principles of physical chemistry; many other nonclimatic factors that affect fire are often difficult to predict in the distant future.

Keywords: fire scars, dendrochronology, physical chemistry, ecosystems

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Guyette, Richard P.; Thompson, Frank R.; Whittier, Jodi; Stambaugh, Michael C.; Dey, Daniel C. 2014. Future fire probability modeling with climate change data and physical chemistry. Forest Science. 60(5): 862-870.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.