Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.2 MB)

Title: Wildfire risk estimation in the Mediterranean area

Author: Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D; Salis, M.;

Date: 2014

Source: Environmetrics. Special Issue: Wildland Fire. 25(6): 384-396

Publication Series: Scientific Journal (JRNL)

Description: We analyzed wildland fire occurrence and size data from Sardinia, Italy, and Corsica, France, to examine spatiotemporal patterns of fire occurrence in relation to weather, land use, anthropogenic features, and time of year. Fires on these islands are largely human caused and can be attributed to negligence, agro-pastoral land use, and arson. Of particular interest was the predictive value of a fire weather index (FWI) that is widely used by fire managers to alert suppression crews. We found that an increase in the FWI from 30 to 60 produced on average an approximate eightfold increase in the odds of a large fire, regardless of the time of year during the fire season or land use type. Total area burned per fire season was positively correlated with the number of days with FWI>40 over the period studied. Strong interactions between time of year and land type were also observed for both the probability of ignition and large fire. For example, the estimated odds of a large fire on agricultural lands in southern Sardinia was approximately 10 times larger than the forest and shrubland land type for areas close to roads, early (May) in the fire season. Conversely, toward the end of the fire season (September), we estimated the odds of a large fire in these same areas at about half the value estimated for the forest land classes. Of the explanatory variables analyzed, only FWI had an effect on the probability of a large fire (P<0.1). The results of the study can be used in several ways including the following: (1) allocating fire detection and suppression resources to specific locations during the fire season; (2) prioritizing fuel breaks along specific road segments that have high predicted ignition rates; (3) refining the current fire danger indices; and (4) parameterizing wildfire simulation models to test how changing land use and climate change may affect spatial patterns in burn probability and intensity.

Keywords: Sardinia wildfire, Corsica wildfire, fire weather index, generalized additive model, generalized Pareto distribution

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M 2014. Wildfire risk estimation in the Mediterranean area. Environmetrics. Special Issue: Wildland Fire. 25(6): 384-396.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.