Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.8 MB)

Title: Landscape-level terrestrial methane flux observed from a very tall tower

Author: Desai, Ankur R.; Xu, Ke; Tian, Hanqin; Weishampel, Peter; Thom, Jonathan; Baumann, Dan; Andrews, Arlyn E.; Cook, Druce D.; King, Jennifer Y.; Kolka, Randall.;

Date: 2015

Source: Agricultural and Forest Meteorology. 201: 61-75.

Publication Series: Scientific Journal (JRNL)

Description: Simulating the magnitude and variability of terrestrial methane sources and sinks poses a challenge to ecosystem models because the biophysical and biogeochemical processes that lead to methane emissions from terrestrial and freshwater ecosystems are, by their nature, episodic and spatially disjunct. As a consequence, model predictions of regional methane emissions based on field campaigns from short eddy covariance towers or static chambers have large uncertainties, because measurements focused on a particular known source of methane emission will be biased compared to regional estimates with regards to magnitude, spatial scale, or frequency of these emissions. Given the relatively large importance of predicting future terrestrial methane fluxes for constraining future atmospheric methane growth rates, a clear need exists to reduce spatiotemporal uncertainties. In 2010, an Ameriflux tower (US-PFa) near Park Falls, WI, USA, was instrumented with closed-path methane flux measurements at 122 m above groundin a mixed wetland-upland landscape representative of the Great Lakes region. Two years of flux observations revealed an average annual methane (CH4) efflux of 785 ± 75 mg C-CH4m-2yr-1, compared to a mean CO2 sink of -80 g C-CO2m-2yr-1, a ratio of 1% in magnitude on a mole basis. Interannual variability in methane flux was 30% of the mean flux and driven by suppression of methane emissions during dry conditions in late summer 2012. Though relatively small, the magnitude of the methane source from the very tall tower measurements was mostly within the range previously measured using static chambers at nearby wetlands, but larger than a simple scaling of those fluxes to the tower footprint. Seasonal patterns in methane fluxes were similar to those simulated in the Dynamic Land Ecosystem Model (DLEM), but magnitude depends on model parameterization and input data, especially regarding wetland extent. The model was unable to simulate short-term (sub-weekly) variability. Temperature was found to be a stronger driver of regional CH4 flux than moisture availability or net ecosystem production at the daily to monthly scale. Taken together, these results emphasize the multi-timescale dependence of drivers of regional methane flux and the importance of long, continuous time series for their characterization.

Keywords: Methane, Eddy covariance, Regional flux, Land-atmosphere

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.



Desai, Ankur R.; Xu, Ke; Tian, Hanqin; Weishampel, Peter; Thom, Jonathan; Baumann, Dan; Andrews, Arlyn E.; Cook, Druce D.; King, Jennifer Y.; Kolka, Randall. 2015. Landscape-level terrestrial methane flux observed from a very tall tower. Agricultural and Forest Meteorology. 201: 61-75.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.