Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.8 MB)

Title: Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a California chaparral fire

Author: Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Akagi, S. K.; Burling, I. R.; Coe, H.; Craven, J. S.; Fischer, E.; McMeeking, G. R.; Seinfeld, J. H.; Soni, T.; Taylor, J. W.; Weise, D. R.; Wold, C. E.;

Date: 2014

Source: Atmospheric Chemistry and Physics Discussions. 14(23): 32427-32489

Publication Series: Scientific Journal (JRNL)

Description: Within minutes after emission, rapid, complex photochemistry within a biomass burning smoke plume can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under 5 a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use version 2.1 of the Aerosol Simulation Program (ASP) to simulate the evolution of O3 and secondary organic aerosol (SOA) within a young biomass burning smoke plume from the Williams prescribed burn in chaparral, which was sampled over California in November 10, 2009. We demonstrate the use of a method for simultaneously accounting for the impact of the unidentified semi-volatile to extremely low volatility organic compounds (here collectively called “SVOCs”) on the formation of OA (using the Volatility Basis Set) and O3 (using the concept of mechanistic reactivity). We show that this method can successfully simulate the observations of O3, OA, PAN, NOx, and C2H4 to within measurement uncertainty using reasonable assumptions about the chemistry of the unidentified SVOCs. These assumptions were: (1) a reaction rate constant with OH of  10-11 cm3 s-1, (2) a significant fraction ( 50 %) of the RO2 +NO reaction resulted in fragmentation, rather than functionalization, of the parent SVOC, (3) ~1.1 molecules of O3 were formed for every molecule of SVOC that reacted, (4) ~60% of the OH that reacted with the unidentified SVOCs was regenerated as HO2, and (5) that ~50% of the NO that reacted with the SVOC peroxy radicals was lost, presumably to organic nitrate formation. Additional evidence for the fragmentation pathway is provided by the observed rate of formation of acetic acid, which is consistent with our assumed fragmentation rate. This method could provide a way for classifying different smoke plume 25 observations in terms of the average chemistry of their SVOCs, and could be used to study how the chemistry of these compounds (and the O3 and OA they form) varies between plumes.

Keywords: smoke, scrub oak, coastal sage scrub, Artemisia, Baccharis, Eriogonum, Salvia

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; Archibald, S.; Poulter, B.; Hao, W. M.; Hantson, S.; Mouillot, F.; Friedlingstein, P.; Maignan, F.; Viovy, N. 2014. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation modelORCHIDEE - Part 1: Simulating historical global burned area and fire regimes. Geoscientific Model Development. 7: 2747-2767.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.