Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.2 MB)

Title: Spatiotemporal models for data-anomaly detection in dynamic environmental monitoring campaigns

Author: Dereszynski, E.W.; Dietterich, T.G.;

Date: 2011

Source: ACM Transactions on Sensor Networks. 8: 1-36

Publication Series: Scientific Journal (JRNL)

Description: The ecological sciences have benefited greatly from recent advances in wireless sensor technologies. These technologies allow researchers to deploy networks of automated sensors, which can monitor a landscape at very fine temporal and spatial scales. However, these networks are subject to harsh conditions, which lead to malfunctions in individual sensors and failures in network communications. The resulting data streams often exhibit incorrect data measurements and missing values. Identifying and correcting these is time-consuming and error-prone. We present a method for real-time automated data quality control (QC) that exploits the spatial and temporal correlations in the data to distinguish sensor failures from valid observations. The model adapts to each deployment site by learning a Bayesian network structure that captures spatial relationships between sensors, and it extends the structure to a dynamic Bayesian network to incorporate temporal correlations. This model is able to flag faulty observations and predict the true values of the missing or corrupt readings. The performance of the model is evaluated on data collected by the SensorScope Project. The results show that the spatiotemporal model demonstrates clear advantages over models that include only temporal or only spatial correlations, and that the model is capable of accurately imputing corrupted values.

Keywords: Learning, Distribution functions, Markov processes, multivariate statistics, Anomaly detection, Bayesian modeling, environmental monitoring, quality control, wireless sensor networks

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Dereszynski, E.W.; Dietterich, T.G. 2011. Spatiotemporal models for data-anomaly detection in dynamic environmental monitoring campaigns. ACM Transactions on Sensor Networks. 8: 1-36.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.