Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology

Author: Bansal, Sheel; Jochum, Till; Wardle, David A.; Nilsson, Marie-Charlotte;

Date: 2014

Source: Canadian Journal of Forestry Research

Publication Series: Scientific Journal (JRNL)

Description: Fire has an important role for regeneration of many boreal forest tree species, and this includes both wildfire and prescribed burning following clear-cutting. Depending on the severity, fire can have a variety of effects on above- and belowground properties that impact tree seedling establishment. Very little is known about the impacts of ground fire severity on post-fire seedling performance, or how the effects of fire severity interact with those of canopy structure. We conducted a full-factorial experiment that manipulated surface-burn severity (no burn; light, medium, or heavy burn; or scarification) and canopy (closed forest or open clear-cut) to reveal their interactive effects on ecophysiological traits of establishing broadleaf and conifer seedlings in a Swedish boreal forest. Medium and heavy surface burns increased seedling growth, photosynthesis, respiration, and foliar N and P concentrations, and these effects were most apparent in open clear-cuts. Growth rates of all species responded similarly to surface-burn treatments, although photosynthesis, foliar P, and specific leaf area were more responsive to burning treatments for broadleaf species than for conifers. Our study demonstrates that the positive impacts of fire on tree seedling physiology are dependent on a minimum severity threshold and are more effective when combined with clear-cutting.

Keywords: boreal forest, fire severity, fire management, foliar nutrients, photosynthesis, respiration, scarification, tree seedling regeneration.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bansal, Sheel; Jochum, Till; Wardle, David A.; Nilsson, Marie-Charlotte. 2014. The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology. Canadian Journal of Forestry Research. 44: 1032-1041.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.