Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (360 KB)

Title: How soil moisture mediates the influence of transpiration on streamflow at hourly to interannual scales in a forested catchment

Author: Moore, G.W.; Jones, J.A.; Bond, B.J.;

Date: 2011

Source: Hydrological Processes. 25(24): 3701–3710.

Publication Series: Scientific Journal (JRNL)

Description: The water balance equation dictates that streamflow may be reduced by transpiration. Yet temporal disequilibrium weakens the relationship between transpiration and streamflow in many cases where inputs and outputs are unbalanced. We address two critical knowledge barriers in ecohydrology with respect to time, scale dependence and lags. Study objectives were to correlate components of the water balance equation at hourly to annual scales, quantify time lags, and simplify critical components of the water budget during wet and dry conditions. We tested interrelationships among precipitation, vapour pressure deficit, transpiration, soil moisture, and streamflow within the confines of a 60-hectare forested watershed in the western Cascades of Oregon. The Pacific Northwest is an ideal location to compare wet and dry seasons because of its Mediterranean climate. Soil moisture explained more than 80% of the variation in streamflow at all temporal scales investigated. Streamflow was most strongly coupled to soil moisture in the wet season because of gravitational drainage patterns; strong coupling of transpiration to vapour pressure deficit was dominant in the dry season and driven by low humidity. We observed progressively longer hourly time lags between soil moisture and streamflow in the dry season, which relates to an increasing soil moisture deficit that took an average of 48 days to refill after the onset of winter rains. We propose that transpiration drives seasonal patterns in soil moisture that relate to patterns in streamflow only after long time lags. In other words, soil moisture mediates the influence of transpiration on streamflow.

Keywords: diurnal variation, ecohydrology, scale dependence, sapflow, temporal patterns, time lags

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Moore, G.W.; Jones, J.A.; Bond, B.J. 2011. How soil moisture mediates the influence of transpiration on streamflow at hourly to interannual scales in a forested catchment. Hydrological Processes. 25(24): 3701–3710.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.