Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.2 MB)

Title: Climate driven changes to rainfall and streamflow patterns in a model tropical island hydrological system

Author: Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.;

Date: 2015

Source: Journal of Hydrology. 523: 160-169

Publication Series: Scientific Journal (JRNL)

Description: Rising atmospheric CO2 and resulting warming are expected to impact freshwater resources in the tropics, but few studies have documented how natural stream flow regimes in tropical watersheds will respond to changing rainfall patterns. To address this data gap, we utilized a space-for-time substitution across a naturally occurring and highly constrained (i.e., similar geomorphic, abiotic, and biotic features) model hydrological system encompassing a 3000 mm mean annual rainfall (MAR) gradient on Hawai'i Island. We monitored stream flow at 15 min intervals in 12 streams across these watersheds for two years (one normal and one dry) and calculated flow metrics describing the flow magnitude, flow variability (e.g., flow flashiness, zero flow days), and flow stability (e.g., deviations from Q90, daily flow range). A decrease in watershed MAR was associated with increased relative rainfall intensity, a greater number of days with zero rainfall resulting in more days with zero flow, and a decrease in Q90:Q50. Flow yield metrics increased with increasing MAR and correlations with MAR were generally stronger in the normal rainfall year compared to the dry year, suggesting that stream flow metrics are less predictable in drier conditions. Compared to the normal rainfall year, during the dry year, Q50 declined and the number of zero flow days increased, while coefficient of variation increased in most streams despite a decrease in stream flashiness due to fewer high flow events. This suggests that if MAR changes, stream flow regimes in tropical watersheds will also shift, with implications for water supply to downstream users and in stream habitat quality for aquatic organisms.

Keywords: Hawai'i, Flow regime, Freshwater ecosystems, Tropical streams, Flash floods, Climate change

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Strauch, A.M.; MacKenzie, R.A.; Giardina, C.P.; Bruland, G.L. 2015. Climate driven changes to rainfall and streamflow patterns in a model tropical island hydrological system. Journal of Hydrology. 523: 160-169.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.