Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (965 KB)

Title: A spectral clustering search algorithm for predicting shallow landslide size and location

Author: Bellugi, Dino; Milledge, David G.; Dietrich, William E.; McKean, Jim A.; Perron, J. Taylor; Sudderth, Erik B.; Kazian, Brian;

Date: 2015

Source: Journal of Geophysical Research: Earth Science. 120. doi: 10.1002/2014JF003137.

Publication Series: Scientific Journal (JRNL)

Description: The potential hazard and geomorphic significance of shallow landslides depend on their location and size. Commonly applied one-dimensional stability models do not include lateral resistances and cannot predict landslide size. Multi-dimensional models must be applied to specific geometries, which are not known a priori, and testing all possible geometries is computationally prohibitive. We present an efficient deterministic search algorithm based on spectral graph theory and couple it with a multidimensional stability model to predict discrete landslides in applications at scales broader than a single hillslope using gridded spatial data. The algorithm is general, assuming only that instability results when driving forces acting on a cluster of cells exceed the resisting forces on its margins and that clusters behave as rigid blocks with a failure plane at the soil-bedrock interface. This algorithm recovers predefined clusters of unstable cells of varying shape and size on a synthetic landscape, predicts the size, location, and shape of an observed shallow landslide using field-measured physical parameters, and is robust to modest changes in input parameters. The search algorithm identifies patches of potential instability within large areas of stable landscape.Within these patches will be many different combinations of cells with a Factor of Safety less than one, suggesting that subtle variations in local conditions (e.g., pore pressure and root strength) may determine the ultimate form and exact location at a specific site. Nonetheless, the tests presented here suggest that the search algorithm enables the prediction of shallow landslide size as well as location across landscapes.

Keywords: shallow landslide, geomorphic significance, search algorithm, Factor of Safety, hillslope geomorphology, spectral clustering, computational modeling, debris flow

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bellugi, Dino; Milledge, David G.; Dietrich, William E.; McKean, Jim A.; Perron, J. Taylor; Sudderth, Erik B.; Kazian, Brian. 2015. A spectral clustering search algorithm for predicting shallow landslide size and location. Journal of Geophysical Research: Earth Science. 120. doi: 10.1002/2014JF003137.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.