Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.7 MB)

Title: Mapping of hydropedologic spatial patterns in a steep headwater catchment

Author: Gillin, Cody P.; Bailey, Scott W.; McGuire, Kevin J.; Gannon, John P.;

Date: 2015

Source: Soil Science Society of America Journal. 79(2): 440-453.

Publication Series: Scientific Journal (JRNL)

Description: A hydropedologic approach can be used to describe soil units affected by distinct hydrologic regimes. We used field observations of soil morphology and geospatial information technology to map the distribution of five hydropedologic soil units across a 42-ha forested headwater catchment. Soils were described and characterized at 172 locations within Watershed 3, the hydrologic reference catchment for the Hubbard Brook Experimental Forest, New Hampshire. Soil profiles were grouped by presence and thickness of genetic horizons. Topographic and bedrock metrics were used in a logistic regression model to estimate the probability of soil group occurrence. Each soil group occurred under specific settings that influence subsurface hydrologic conditions. The most important metrics for predicting soil groups were Euclidean distance from bedrock outcrop, topographic wetness index, bedrock-weighted upslope accumulated area, and topographic position index. Catchment-scale maps of hydropedologic units highlight regions dominated by lateral eluviation or lateral illuviation and show that only about half the catchment is dominated by podzolization processes occurring under vertical percolation at the pedon scale. A water table map shows the importance of near-stream zones, typically viewed as variable source areas, as well as more distal bedrock-controlled zones to runoff generation. Although the catchment is steep and underlain by soils developed in coarse-textured parent material, patterns of groundwater incursion into the solum indicate that well-drained soils are restricted to deeper soils away from shallow bedrock and the intermittent stream network. Hydropedologic units can be a valuable tool for informing watershed management, soil C accounting, and understanding biogeochemical processes and runoff generation.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Gillin, Cody P.; Bailey, Scott W.; McGuire, Kevin J.; Gannon, John P. 2015. Mapping of hydropedologic spatial patterns in a steep headwater catchment. Soil Science Society of America Journal. 79(2): 440-453.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.