Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.1 MB)

Title: How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?

Author: Schwalm, C.R.; Huntzinger, D.N.; Cook, R.B.; Wei, Y.; Baker, I.T.; Neilson, R.P.; Poulter, B.; Caldwell, Peter; Sun, G.; Tian, H.Q.; Zeng, N.;

Date: 2015

Source: Elsevier Ecological Modelling 303 (2015) 10 p.

Publication Series: Scientific Journal (JRNL)

Description: Significant changes in the water cycle are expected under current global environmental change. Robust assessment of present-day water cycle dynamics at continental to global scales is confounded by shortcomings in the observed record. Modeled assessments also yield conflicting results which are linked to differences in model structure and simulation protocol. Here we compare simulated gridded (1◦ spatial resolution) runoff from six terrestrial biosphere models (TBMs), seven reanalysis products, and one gridded surface station product in the contiguous United States (CONUS) from 2001 to 2005. We evaluate the consistency of these 14 estimates with stream gauge data, both as depleted flow and corrected for net withdrawals (2005 only), at the CONUS and water resource region scale, as well as examining similarity across TBMs and reanalysis products at the grid cell scale. Mean runoff across all simulated products and regions varies widely (range: 71 to 356 mm yr−1) relative to observed continental-scale runoff (209 or 280 mm yr−1 when corrected for net withdrawals). Across all 14 products 8 exhibit Nash–Sutcliffe efficiency values in excess of 0.8 and three are within 10% of the observed value. Region-level mismatch exhibits a weak pattern of overestimation in western and underestimation in eastern regions—although two products are systematically biased across all regions—and largely scales with water use. Although gridded composite TBM and reanalysis runoff show some regional similarities, individual product values are highly variable. At the coarse scales used here we find that progress in better constraining simulated runoff requires standardized forcing data and the explicit incorporation of human effects (e.g., water withdrawals by source, fire, and land use change).

Keywords: Terrestrial biosphere models Runoff Intercomparison North American Carbon Program Regional

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Schwalm,C.R.; Huntzinger,D.N.; Cook, R.B.; Wei, Y.; Baker, I.T.; Neilson, R.P.; Poulter, B.; Caldwell, Peter; Sun, G.; Tian, H.Q.; Zeng, N. 2015. How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?. Ecological Modelling 303 (2015) 10 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.