Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (882 KB)

Title: Simulations of horizontal roll vortex development above lines of extreme surface heating

Author: Heilman, W.E.; Fast, J.D.;

Date: 1992

Source: International Journal of Wildland Fire. 2(2): 55-68.

Publication Series: Scientific Journal (JRNL)

Description: A two-dimensional, nonhydrostatic, coupled, earth/atmospheric model has been used to simulate mean and turbulent atmospheric characteristics near lines of extreme surface heating. Prognostic equations are used to solve for the horizontal and vertical wind components, potential temperature, and turbulent kinetic energy (TKE). The model computes nonhydrostatic pressure deviations from a derived atmospheric continuity equation. Horizontal pressure gradients generated from surface heating are calculated from thermal wind principles. Model simulations indicate the development of buoyancy-induced horizontal roll vortices near regions with surface temperatures typical of wildland fires. Model results are qualitatively similar to previous wind-tunnel experiments. When surface temperatures are increased, the circulations associated with the roll vortices become more vigorous. The introduction of a weak ambient flow in a direction perpendicular to the line of heating has a major influence on the simulated circulation patterns and nonhydrostatic pressure deviations near the line of heating. The effect is more pronounced for lower surface temperatures at the heating line. The TKE profiles reveal preferred regions of TKE growth that can be attributed mainly to buoyancy or advection effects.

Keywords: Nonhydrostatic atmospheric model, Vorticity, Turbulence, Buoyancy, Advection

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Heilman, W.E.; Fast, J.D. 1992. Simulations of horizontal roll vortex development above lines of extreme surface heating. International Journal of Wildland Fire. 2(2): 55-68.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.