Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (923 KB)

Title: Seedling growth responses to light and mineral N form are predicted by species ecologies and can help explain tree diversity

Author: Walters, Michael B.; Willis, John L.; Gottschalk, Kurt W.;

Date: 2014

Source: Canadian Journal of Forest Research. 44(11): 1356-1368.

Publication Series: Scientific Journal (JRNL)

Description: Tree species distributions and diversity could be explained by rank changes in performance over multiple spatiotemporal resource gradients, i.e., resource partitioning. For 14 species planted in 45 harvest gap and closed canopy locations in a mesic northern hardwood forest community, Michigan, USA, we asked the following questions: (i) are species growth responses to light, nitrogen (N), or N form (ammonium vs. nitrate) related to their ecological distributions and phylogenies? and (ii) is there evidence of growth-based resource partitioning over measured resource gradients? Growth responses to the N form were consistent with both differences in uptake energy requirements between N forms and their availability through succession and across fertility gradients; height growth was negatively related to the species shade-tolerance score, especially in high light, i.e., shade-intolerant species responded to soil nitrate-N and shade-tolerant species responded to ammonium-N; fertile soil associated species responded to nitrate-N and infertile soil associated species to ammonium-N; and gymnosperms responded to ammonium-N and angiosperm responses varied. Modeled growth responses to resources showed only modest evidence for rank changes over resource gradients, with N contributing less to rank changes than light. Thus, growth responses to resources were accurately predicted by species ecology and (or) phylogeny; however, there was only modest support for the notion that growth-based resource partitioning underlies community-scale diversity in a northern hardwood forest.

Keywords: height growth, shade tolerance, soil nitrogen, nitrate, ammonium, tree diversity

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Redwood, Mame E.; Matlack, Glenn R.; Huebner, Cynthia D. 2016. Seed longevity and dormancy state in a disturbance-dependent forest herb, Ageratina altissima. Seed Science Research 26, 148–152.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.