Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (563 KB)

Title: Soil microbial community resilience with tree thinning in a 40-year-old experimental ponderosa pine forest

Author: Overby, Steven T.; Owen, Suzanne M.; Hart, Stephen C.; Neary, Daniel G.; Johnson, Nancy C.;

Date: 2015

Source: Applied Soil Ecology. 93: 1-10.

Publication Series: Scientific Journal (JRNL)

Description: Establishment of native grasses is a primary objective of restoration in Pinus ponderosa var. scopulorum (P. & C. Lawson) forests in the southwestern United States. Interactions among native grasses and soil microorganisms generate feedbacks that influence the achievement of this objective. We examined soil chemical properties and communities of plants and soil microorganisms in clear-cuts and P. ponderosa stands thinned and maintained at low and medium tree densities for over 40 years along with high density (unthinned) stands. Phospholipid fatty acids (PLFA) in soils were analyzed to examine arbuscular mycorrhizal (AM) fungi and microbial communities in the three thinning treatments and the unthinned stands with and without a recent broadcast burn. Additionally, two native bunchgrasses, Festuca arizonica and Muhlenbergia wrightii were grown in containers filled with intact soil cores collected from each field plot to more thoroughly compare the abundance of AM fungi and microbial communities across different stand densities and burn treatments. Tree thinning decreased litter cover and increased the abundance and diversity and altered community composition of both herbaceous vegetation and AM fungi. In the mineral soil layer, the pH, total carbon, nitrogen, phosphorus and PLFA profiles did not differ significantly among the four stand density or burn treatments. Mycorrhizal colonization of the container grown grasses did not significantly differ with tree density or burn treatments; however, F. arizonica roots had a strong trend for decreased colonization when grown in soil from high density (unthinned) tree cover. Soil from the containers with F. arizonica had a greater abundance of AM fungal spores. Furthermore, bacterial community composition varied with grass species. Concentration of biomarkers for bacteria were higher in soil that supported F. arizonica compared to soil in which M. wrightii was grown. Our results indicate that the creation of clear-cut openings in forests may increase the abundance and richness of AM fungal propagules and soil bacterial communities were surprisingly resilient to tree thinning and low-intensity fire treatments. These results suggest managing forests to create clear-cut openings generate conditions that favor understory native grasses and AM fungi that are linked to soil bacterial communities.

Keywords: arbuscular mycorrhizal fungi, phospholipid fatty acids, soil bioassay, Festuca arizonica, Muhlenbergia wrightii, Fort Valley Experimental Forest

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Overby, Steven T.; Owen, Suzanne M.; Hart, Stephen C.; Neary, Daniel G.; Johnson, Nancy C. 2015. Soil microbial community resilience with tree thinning in a 40-year-old experimental ponderosa pine forest. Applied Soil Ecology. 93: 1-10.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.