Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.7 MB)

Title: Long-term variability in the water budget and its controls in an oak-dominated temperate forest

Author: Xie, Jing; Sun, Ge; Chu, Hou-Sen; Liu, Junguo; McNulty, Steven G.; Noormets, Asko; John, Ranjeet; Ouyang, Zutao; Zha, Tianshan; Li, Haitao; Guan, Wenbin; Chen, Jiquan;

Date: 2014

Source: Hydrological Processes 28, 6054-6066.

Publication Series: Scientific Journal (JRNL)

Description: Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi-year water budget (2004–2010) and quantified environmental controls on an evapotranspiration (ET) in a 70- year-old mixed-oak woodland forest in northwest Ohio, USA. ET was measured using the eddy-covariance technique along with precipitation (P), soil volumetric water content (VWC), and shallow groundwater table fluctuation. Three biophysical models were constructed and validated to calculate potential ET (PET) for developing predictive monthly ET models. We found that the annual variability in ET was relatively stable and ranged from 578mm in 2009 to 670mm in 2010. In contrast, ET/P was more variable and ranged from 0.60 in 2006 to 0.96 in 2010. Mean annual ET/PET_FAO was 0.64, whereas the mean annual PET_FAO/P was 1.15. Annual ET/PET_FAO was relatively stable and ranged from 0.60 in 2005 to 0.72 in 2004. Soil water storage and shallow groundwater recharge during the non-growing season were essential in supplying ET during the growing season when ET exceeded P. Spring leaf area index (LAI), summer photosynthetically active radiation, and autumn and winter air temperatures (Ta) were the most significant controls of monthly ET. Moreover, LAI regulated ET during the whole growing season and higher temperatures increased ET even during dry periods. Our empirical modelling showed that the interaction of LAI and PET explained >90% of the variability in measured ET. Altogether, we found that increases in Ta and shifts in P distribution are likely to impact forest hydrology by altering shallow groundwater fluctuations, soil water storage, and ET and, consequently, alter the ecosystem functions of temperate forests.

Keywords: evapotranspiration, water budget, interannual and seasonal variability, climatic warming, eddy-covariance, temperate deciduous forest

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Xie, Jing; Sun, Ge; Chu, Hou-Sen; Liu, Junguo; McNulty, Steven G.; Noormets, Asko; John, Ranjeet; Ouyang, Zutao; Zha, Tianshan; Li, Haitao; Guan, Wenbin; Chen, Jiquan 2014. Long-term variability in the water budget and its controls in an oak-dominated temperate forest. Hydrological Processes 28, 6054-6066. 13 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.