Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (776 KB)

Title: Inferential ecosystem models, from network data to prediction

Author: Clark, James S.; Agarwal, Pankaj; Bell, David M.; Flikkema, Paul G.; Gelfand, Alan; Nguyen, Xuanlong; Ward, Eric; Yang, Jun.;

Date: 2011

Source: Ecological Applications. 21(5): 1523-1536.

Publication Series: Scientific Journal (JRNL)

Description: Recent developments suggest that predictive modeling could begin to play a larger role not only for data analysis, but also for data collection. We address the example of efficient wireless sensor networks, where inferential ecosystem models can be used to weigh the value of an observation against the cost of data collection. Transmission costs make observations ‘‘expensive’’; networks will typically be deployed in remote locations without access to infrastructure (e.g., power). The capacity to sample intensively makes sensor networks valuable, but high-frequency data are informative only at specific times and locations. Sampling intervals will range from meters and seconds to landscapes and years, depending on the process, the current states of the system, the uncertainty about those states, and the perceived potential for rapid change. Given that intensive sampling is sometimes critical, but more often wasteful, how do we develop tools to control the measurement and transmission processes? We address the potential of data collection controlled and/or supplemented by inferential ecosystem models. In a given model, the value of an observation can be evaluated in terms of its contribution to estimates of state variables and important parameters. There will be more than one model applied to network data that will include as state variables water, carbon, energy balance, biogeochemistry, tree ecophysiology, and forest demographic processes. The value of an observation will depend on the application. Inference is needed to weigh the contributions against transmission cost. Network control must be dynamic and driven by models capable of learning about both the environment and the network. We discuss application of Bayesian inference to model data from a developing sensor network as a basis for controlling the measurement and transmission processes. Our examples involve soil moisture and sap flux, but we discuss broader application of the approach, including its implications for network design.

Keywords: Bayesian prediction, carbon-energy-water balance, ecosytem data, research networks, sensor networks

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Clark, James S.; Agarwal, Pankaj; Bell, David M.; Flikkema, Paul G.; Gelfand, Alan; Nguyen, Xuanlong; Ward, Eric; Yang, Jun. 2011. Inferential ecosystem models, from network data to prediction. Ecological Applications. 21(5): 1523-1536. 14 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.